Activation of G Proteins by Aluminum Fluoride Enhances RANKL-Mediated Osteoclastogenesis

نویسندگان

  • Boryung Park
  • Yu-Mi Yang
  • Byung-Jai Choi
  • Min Seuk Kim
  • Dong Min Shin
چکیده

Receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis is accompanied by intracellular Ca(2+) mobilization in a form of oscillations, which plays essential roles by activating sequentially Ca(2+)/calmodulin-dependent protein kinase, calcineurin and NFATc1, necessary in the osteoclast differentiation. However, it is not known whether Ca(2+) mobilization which is evoked in RANKL-independent way induces to differentiate into osteoclasts. In present study, we investigated Ca(2+) mobilization induced by aluminum fluoride (AlF4 (-)), a G-protein activator, with or without RANKL and the effects of AlF4 (-) on the osteoclastogenesis in primary cultured mouse bone marrow-derived macrophages (BMMs). We show here that AlF4 (-) induces intracellular Ca(2+) concentration ([Ca(2+)]i) oscillations, which is dependent on extracellular Ca(2+) influx. Notably, co-stimulation of AlF4 (-) with RANKL resulted in enhanced NFATc1 expression and formation of tartrate-resistant acid phosphatase (TRAP) positive multinucleated cells. Additionally, we confirmed that mitogen-activated protein kinase (MAPK) is also activated by AlF4 (-). Taken together, these results demonstrate that G-protein would be a novel modulator responsible for [Ca(2+)]i oscillations and MAPK activation which lead to enhancement of RANKL-mediated osteoclastogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulatory mechanism of osteoclastogenesis by RANKL and Wnt signals.

Osteoclasts develop from monocyte-macrophage lineage cells under the regulation of osteoblasts. Osteoblasts express two cytokines essential for osteoclastogenesis, macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-KappaB ligand (RANKL). Osteoblasts also produce osteoprotegerin (OPG), a decoy receptor for RANKL, which inhibits the interaction between RANKL and...

متن کامل

MafB negatively regulates RANKL-mediated osteoclast differentiation.

Receptor activator of nuclear factor kappaB ligand (RANKL) induces osteoclast formation from hematopoietic cells via regulation of various transcription factors. Here, we show that MafB negatively regulates RANKL-induced osteoclast differentiation. Expression levels of MafB are significantly reduced by RANKL during osteoclastogenesis. Overexpression of MafB in bone marrow-derived monocyte/macro...

متن کامل

RANKL downregulates cell surface CXCR6 expression through JAK2/STAT3 signaling pathway during osteoclastogenesis.

The receptor activator of nuclear factor-κB ligand (RANKL), as a member of the tumor necrosis factor (TNF) family, plays an essential role in osteoclast differentiation and function. Chemokines and their receptors have recently been shown to play critical roles in osteoclastogenesis, however, whether CXCL16-CXCR6 plays role in RANKL-mediated osteoclastogenesis is unknown. In this study, we firs...

متن کامل

STAT5 is a key transcription factor for IL-3-mediated inhibition of RANKL-induced osteoclastogenesis

Among the diverse cytokines involved in osteoclast differentiation, interleukin (IL)-3 inhibits RANKL-induced osteoclastogenesis. However, the mechanism underlying IL-3-mediated inhibition of osteoclast differentiation is not fully understood. Here we demonstrate that the activation of signal transducers and activators of transcription 5 (STAT5) by IL-3 inhibits RANKL-induced osteoclastogenesis...

متن کامل

Biphasic and dosage-dependent regulation of osteoclastogenesis by β-catenin.

Wnt/β-catenin signaling is a critical regulator of skeletal physiology. However, previous studies have mainly focused on its roles in osteoblasts, while its specific function in osteoclasts is unknown. This is a clinically important question because neutralizing antibodies against Wnt antagonists are promising new drugs for bone diseases. Here, we show that in osteoclastogenesis, β-catenin is i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2013